优质GH738高温合金,GH738高温合金板,固溶强化
材料牌号:GH738
美国牌号:Waspaloy
法国牌号:NC20K14
一、GH738概述
GH738是以γ′相沉淀硬化的镍基高温合金,具有良好的耐燃气腐蚀能力、较高的屈服强度和疲劳性能,工艺塑性良好,组织稳定。广泛用于航空发动机转动部件,使用温度不高于815℃。可以生产冷轧和热轧板材、管材、带材、丝材和锻件、铸件、紧固件。
1.1 GH738材料牌号 GH738
1.2 GH738相近牌号 Waspaloy(美国),NC20K14(法国)
1.3 GH738材料的技术标准
1.4 GH738化学成分 见表1-1。
表1-1 %
C |
Cr |
Ni |
Co |
Mo |
Al |
Ti |
|||||
0.03~0.10 |
18.0~21.0 |
余 |
12.0~15.0 |
3.50~5.00 |
1.20~1.60 |
2.75~3.25 |
|||||
B |
Zr |
Fe |
Mn |
Si |
P |
S |
Cu |
||||
不小于 |
|||||||||||
0.003~0.010 |
0.02~0.08 |
2.0 |
0.10 |
0.15 |
0.015 |
0.015 |
0.10 |
注:微量杂质为ω(Pb)≤0.001%、ω(As)≤0.0025%、ω(Sn)≤0.0012%、ω(Sb)≤0.0025%、ω(Bi)≤0.0001%。
1.5 GH738热处理制度 1080℃±10℃,4h,空冷+840℃,24h,空冷+760℃,16h,空冷。
1.6 GH738品种规格和供应状态 可生产棒材、型材、锻坯、环形件、厚板、薄板、带材、管材、丝材、砂型铸件、精密铸件和紧固件等,通常不经热处理交货,板材固溶处理后交货。
1.7 GH738熔炼和铸造工艺 采用真空感应熔炼加真空电弧重熔工艺。
1.8 GH738应用概况与特殊要求 该合金在国外广泛用于航空发动机和燃气轮机,主要用作涡轮叶片及涡轮盘等转动件,有成熟的使用经验。由于该合金含钴较高,在国内较少采用。
二、GH738物理及化学性能
2.1 GH738热性能
2.1.1 GH738熔化温度范围 1330~1360℃。
2.1.2 GH738热导率 见表2-1。
表2-1[1]
θ/℃ |
360 |
460 |
545 |
640 |
770 |
855 |
985 |
λ/(W/(m·℃)) |
16.8 |
18.3 |
20.2 |
22.4 |
24.1 |
25.3 |
28.0 |
2.1.3 GH738比热容 见表2-2。
表2-2[1]
θ/℃ |
360 |
460 |
545 |
640 |
770 |
855 |
985 |
c/(J/(kg.℃)) |
515 |
540 |
573 |
603 |
640 |
665 |
707 |
2.1.4 GH738线膨胀系数 见表2-3。
表2-3[1]
θ/℃ |
20~100 |
20~200 |
20~300 |
20~400 |
20~500 |
20~600 |
20~700 |
20~800 |
20~900 |
α/10-6℃-1 |
12.47 |
12.73 |
13.04 |
13.53 |
13.97 |
14.47 |
15.05 |
15.68 |
15.95 |
2.2 GH738密度 ρ=8.22g/cm3。
2.3 GH738电性能
2.4 GH738磁性能 合金无磁性。
2.5 GH738化学性能
2.5.1 GH738抗氧化性能 合金在空气介质中试验100h后的氧化速率见表2-4。
2.5.2 GH738耐腐蚀性能 合金抗盐雾腐蚀能力良好。
表2-4[1]
θ/℃ |
900 |
1000 |
氧化速率/(g/(m2· h)) |
0.083 |
0.226 |
三、GH738力学性能
3.1 GH738技术标准规定的性能 见表3-1。
表3-1
拉伸性能 |
HBS |
持久性能 |
||||||
θ/℃ |
σb/MPa |
δ5/% |
φ/% |
θ/℃ |
σ/MPa |
t/h |
δ5/% |
|
不小于 |
不小于 |
|||||||
815 |
608 |
20 |
32 |
299~387 |
815 |
328 |
23 |
8 |
四、GH738组织结构
4.1 GH738相变温度 合金中γ′相的溶解温度为980~1050℃,开始从基体中析出温度为630℃,析出峰值温度为800℃。合金中M23C6碳化物相的开始析出温度为700℃,完全溶解温度为1020℃。
4.2 GH738时间-温度-组织转变曲线
4.3 GH738合金组织结构 经标准热处理后,除奥氏体基体外,还有γ′相,其化学式为(Ni0.883Fe0.03Cr0.048Co0.039)3.28(Al0.38Ti0.62Mo痕迹),该相总量占合金重量的20%。此外,还有M23C6型碳化物,其化学式近似为(Cr0.746Mo0.094Ni0.084Co0.041Fe0.023Ti0.012)23C6。另外,还有少量的Ti(CN)和TiN等相。
该合金经650℃和730℃长期时效至3000h,γ′相的数量变化不明显,分别约有3%和1%左右的补充析出,γ′相大小分别从146nm长大至196nm和177nm。碳化物MC向M23C6转化,碳化物总量略有增加,从时效前占基体总量的0.5%增加到0.76%和0.78%。在长期时效过程中无新相析出,组织稳定。
五、GH738工艺性能与要求
5.1 GH738成型性能
5.1.1 GH738合金塑性图见图5-1。
5.1.2 GH738合金的再结晶图见图5-2。
5.1.3 GH738该合金热加工塑性良好,是比较好成形的镍基高温合金。锻造开坯加热温度1150~1170℃,适宜的热加工温度为1040~1170℃,终锻温度不低于1000℃。涡轮叶片锻造温度通常采用1070~1110℃范围,模锻最小变形量应大于25%。应避免在高温(1180℃)下小变形量(约10%)热加工,此时可能在晶界上形成连续的MC型碳化物薄膜,导致缺口敏感。在较低温度下(980~1080℃)热变形,晶界上很少形成MC碳化物薄膜,只有不连续的M23C6型碳化物,热处理后可获得均匀的4~5级晶粒度,综合性能良好。
5.3 GH738零件热处理工艺 零件热处理时应注意防止零件表面元素贫化,加热应均匀。
5.4 GH738表面处理工艺 该合金用做涡轮叶片和涡轮盘等转动件时,为了提高疲劳性能,进行氩气保护消除应力退火,以及喷丸处理。为提高涡轮叶片耐燃气腐蚀及热疲劳性能,可进行扩散渗铝处理。