必须了解三个物理现象:
(1)当一个导体相对磁场运动时,导体中会感生电流。从而在导体的两端会产生感生电动势。
(2)当导体处在变化的磁场中,导体内部会产生感生电流。像第一种情况一样,导体内也会产生感生电动势。
(3)当导体中有电流流动时,导体周围会产生磁场。
根据楞次定律.电路中的感生电动势是描述电路中抵消或补偿其自身的增加或减少的一个物理量。从这个原理出发,会有以下效应:
(1)无论导体和磁场发生相对运动还是磁场变化,都会产生感生电流。感生电流的方向是其激发的磁场与原磁场的变化趋势相反的方向。
(2)导体中电流改变时,由此电流激发的磁场会发生变化,磁场的变化会感生新的电流以阻碍原电流的变化。
(3)由电流变化感生的电动势与产生电流变化的电势的极性相反。
电感的单位是亨E[利](H)。如果导体中的电流以IA/s的速率变化,会感生IV的电动势,那么此导体的电感就为1H。这个关系可以表示为:
V=L(ΔI/Δt)
式中,V为感生的电动势,V;L为电感,H;r为电流,A;t为时间,s;△为微小改变量。
亨E[利]这个单位适用于在直流电源供电的连续滤波腔体中使用的电感器,但对于射频和中频电路来说,它的量纲太大了。在这些电路中通常使用的是辅助单位毫亨(mH)和微亨(μH)。它们之间的换算关系是:
1H=1000mH=1000000μH
所以,
1mH=10-3H, 1μH=10-6H
这里有一个值得注意的现象叫做自感:当电路中的电流变化时,电流激发的磁场也相应变化。磁场的变化会感生一个反向电流阻碍原电流的变化。这个感生电流也会产生一个电动势,称作反向电动势。和其他形式的电感一样,自感的单位也是亨E[利]和它的辅助单位。
虽然电感的概念涉及一系列现象,但是单独使用时通常是指自感。所以,本章中的讨论除非特别说明(比如互感等),电感都是指自感。不过要记住:该专业术语拥有比一般理解更多的含义电感的制作原材料有磁芯、铜线、骨架等,而一款电感的制作决定性左右的是磁芯的选择,下面我们详细介绍一下主要几款磁芯的特性
1.铁粉芯
铁粉芯主要为一种软磁铁粉芯,主要采用纯铁粉加入绝缘剂、粘结剂,通过挤压成型而得,一般的初始导磁率为75以下,该产品有很高的饱和磁通密度,一般产品由于表面电阻较小,因此不太适用200KHz以上的电路,单随之技术的进步,也不断出现高频材料。铁粉芯一般用于功率型的磁环电感较常用在各种开关电源上
2.镍锌铁芯
镍锌铁芯主要是一种软磁铁氧体磁芯,镍锌磁芯一般的初始导磁率为5~1500,该磁芯一般用于中高频电路上,由于具有较高的表面电阻(100MΩ以上)
镍锌磁芯的用途:
抗EMI铁氧体:EMI材料依靠磁损和电损来吸收电磁能量,以吸收干扰电磁波,因此一般要求在10~100MHz条件下有较高的阻抗,一般用于磁珠;
选频滤波电感:该类材料一般要求损耗低,温度系数低,居里温度高,高频特性好等,一般用于色环电感等。
扼流电感和功率电感:该磁芯一般要求有饱和磁通量大,居里温度高等特点,一般应用于 磁棒电感、部分工字电感轴向电感;
3.锰锌磁芯
锰锌磁芯同样是一种软磁磁芯,具有较高的初始导磁率(2000~15000),该产品表面电阻低,且初始导磁率越高表面电阻越低,故此一般使用在1MHz以下电路。
主要用途
该材的初始导磁率一般在2000~3000左右,有很高的饱和磁通密度,较低的损耗,是100KHz左右最理想的功率电感磁芯之一;一般使用于磁环共模电感等
4.铁合金
铁合金材料改进了铁粉芯的缺点,强化了铁粉芯的优点,一般应用于要求非常高的磁环功率电感中
5.非晶合金材料
具有高初始导磁率(50000~60000),高饱和,低损耗等特性,一般用于要求非常高才使用;电动机作为一种拖动机械因具有结构简单、价格低廉、使用维护方便等优点,在国民经济各个方面被广泛采用。在当代,随着电子技术的发展和智能电动机保护器技术的成熟而普及率越来越高。
智能电动机保护器采用了微处理器技术,不仅解决了传统的热继整定粗糙、不能实现断相保护,重复性差、测量参数误差大的缺点。保护器通过电流来判断断相故障,软件模拟热积累过程的方法来实现过载保护等方法保证了电机的可靠运行,而微
处理器强大的扩展性包括开关量输入、继电器输出,4~20mA变送输出、 RS485通讯等很好的满足了控制系统的“四遥”功能。
电动机保护器提高了电动机运行的可靠性和系统智能化要求,因此保护器的可靠运行起着举足轻重的作用,同时也对保护器抗外界干扰提出了比较现实的要求。下面就从硬件和软件两个方面提出可靠性设计。
2 硬件可靠性设计
2.1 微处理的选择
采用Freescale公司的高性能处理器MC9S08AW60。MC9S08AW60是Freescale公司一款基于S08内核的高度节能型处理器,是第一款认可用于汽车市场的微控制器。可应用在家电、汽车、工业控制等场合,具有业内最佳的EMC性能。
2.2 电源端滤波处理
利用电磁原理进行硬件电路滤波是提高保护器EMC的有效方法。线路如下图,经热敏电阻t、压敏电阻RV1、电感L1、L2、差模电容C1、共模电感 L3、共模电容C2、C3组成的两级滤波处理,很好的隔离了由于电源端的输入和输出干扰。PTC热敏电阻器的主要用于过流过热保护,直接串在负载电路中,在线路出现异常状况时,能够自动限制过电流或阻断电流,当故障排除后又恢复原态,俗称“万次保险丝”。根据线路的最大工作电流来确定选择。压敏电阻主要用于吸收各种操作浪涌及感应雷浪涌过压保护,以防止这类过电压干扰或损坏各种电路元件。根据设计经受的浪涌电压按照最大允许使用电压和通流容量来选择。其中,L1、L2、C1为抑制差模干扰,L3、C2、C3为抑制共模干扰。L1、L2铁芯应选择不易饱和的材料及M-F特性优良的材料。按照IEC-380 安全技术指标推荐,图中元件参数的选择范围为:C1=0.1~2uF;C2、C3=2.2~33uF;L3为几个或几十毫亨,随工作电流不同而取不同的参数值。